博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
深度学习中易混概念小结
阅读量:5219 次
发布时间:2019-06-14

本文共 900 字,大约阅读时间需要 3 分钟。

 

1.验证集与测试集有什么区别?为什么要分训练集、验证集和测试集?测试集与验证集的存在主要是为了把调参与评估泛化能力分为两个相对独立的步骤,体现了正交化思想。        验证集一般用于进一步确定模型中的超参数(例如正则项系数、神经网络中隐层的节点个数,k值等),而测试集只是用于评估模型的精确度(即泛化能力)。        举个例子:假设建立一个BP神经网络,对于隐含层的节点数目我们并没有很好的方法取确定,此时一般将节点数设为某一具体的值,通过训练出相应的参数后,再由验证集取检测该模型的误差; 然后再改变节点数,重复上述过程,直到模型在验证集上误差最小。此时的节点数可以认为是最优节点数。但是这只是在验证集上的表现最优而已,事实上在调整节点数的这个过程当中, 我们已经不知不觉的让调整节点数的方向往达到验证集最小误差这个目标去了。 但事实上,在验证集误差最小通常并不代表在整个数据集上的误差也会小(因为我们是利用验证集上的表现来调整超参数的,因此在调整超参数的过程当中,验证集的误差在不断减少是必然的), 因此需要另外一个数据集来测试模型真正的泛化能力,即测试集。        测试集是在模型确定好所有参数之后,根据测试误差来评判这个模型好坏的一个数据集。        ( 测试集用的次数越少越好。)转载来源:https://www.jianshu.com/p/449ab7ce04d2
2. rank & mAP参考自:http://yongyuan.name/blog/evaluation-of-information-retrievalmAP(mean average precision),用于衡量算法的搜索能力AP(Average Precision)是希望正确的结果要优先出现这种概念的具体指标。 mAP是AP的延伸应用,取多次查询之AP的均值来代表查询(或检索)系统的准确度。 rank,搜索结果中最靠前的一张图是正确结果的概率,一般通过实验多次采取平均值。

如图所示,

转载于:https://www.cnblogs.com/tay007/p/11170299.html

你可能感兴趣的文章
18款在线代码片段测试工具
查看>>
20.C++- &&,||逻辑重载操作符的缺陷、,逗号重载操作符的分析
查看>>
静态变量数组实现LRU算法
查看>>
在SQL中怎么把一列字符串拆分为多列
查看>>
中文系统 上传file的input显示英文
查看>>
css样式写一个三角形
查看>>
比callback更简洁的链式执行promise
查看>>
android permission
查看>>
【译】在Asp.Net中操作PDF - iTextSharp - 使用字体
查看>>
事务备份还原分离附加
查看>>
JSch - Java实现的SFTP(文件上传详解篇)
查看>>
一些注意点
查看>>
.net 文本框只允许输入XX,(正则表达式)
查看>>
[BSGS][哈希]luogu P3846 可爱的质数
查看>>
Python 第四十五章 MySQL 内容回顾
查看>>
iostat参数说明
查看>>
Python-Mac 安装 PyQt4
查看>>
P2571 [SCOI2010]传送带
查看>>
用Data Url (data:image/jpg;base64,)将小图片生成数据流形式
查看>>
实验2-2
查看>>